
,
c

A STUDY OF THE USE OF ABSTRACT TYPES FOR THE
REPRESENTATION OF ENGINEERING UNITS IN

INTEGRATION AND TEST APPLICATIONS

Charles S. Johnson

ABSTRACT

Physical quantities using various units of measurement can
be well represented in Ada by the use of abstract types.
Computation involving these quantities (electric potential,
mass, volume) can also aut-atically invoke the computation and
checking of some of the “implicitly associable attributes of
measurements. Quantities can be held internally in SI units,
transparently to the user, with automatic conversion. Through
dimensional analysis, the type of the derived quantity resulting
from a computation is known, thereby allowing dynamic checks of
the equations used. Through error analysis, the precision with
which a quantity is measured can be correctly propagated into
the result of a computation involving that quantity. The output
of both measured and computed quantities can automatically be
rounded to the correct significance, and labeled with the
correct units.

The impact of the possible implementation of these
techniques in integration and test applications is discussed.
The overhead of computing and transporting measurement
attributes is weighed against the advantages gained by their
use. The construction of a run-time interpreter using physical
quantities in equations can be aided by the dynamic equation
checks provided by dimensional analysis. The overhead of
responding to measured and computed system variables in real-
time systems can be decreased in the case where only the
significant changes in data values are responded to. The
effects of higher levels of abstraction on the generation and
maintenance of software used in integration and test
applications are also discussed.

INTRODUCTION

Data abstraction should, in the near future, become the
most important tool used in the Ada development of replacements
to current systems functioning in the area of Integration and
Test (I t T) . This importance stems from the urgent need to
maintain Test Procedure/ Test System Independence. This
independence promotes both the reusability of Test Procedures
and the possibility of modifying physical device information in
the Test System, at run-time, without affecting procedures using
logical access methods. This is necessary to decrease turn-
around time due to modifications of the Test System/ Test
Article hardware configurations.

F.4.4.1

BRIEF BACKGROUND

Kennedy Space Center/ Engineering Development/ Digital
Electronics Engineering Division is in the process of
prototyping distributed systems supporting I & T applications,
particularly the Space Station Operations Language (SSOL)
System, which is the I & T subset of the User Interface Language
(UIL) for the Space Station. The discussions in this paper were
developed from the results of systems designed and developed in
Ada to demonstrate the feasibility of supporting the abstract
data types used in I & T, specifically, engineering units. The
Ada environment used was that of VAX Ada under VAX/VMS.

SYSTEM CONCEPT

There is a direct correlation between the effectiveness of
computer systems and the fidelity with which objects in those
systems simulate the behavior of the external phenomena that
they are intended to represent. [l] The definition of objects
is then akin to a simulation effort: complete with objectives
outlining progress towards simulation goals, and constraints
which limit the scope of the effort.

The goal of object definition for measurements and
quantities used in Integration and Test applications is to
create objects representing the physical quantities that are
measured, tracking a magnitude for the quantity, and the type of
quantity. The quantities (VOLTS, METERS/SECOND, PSI) should
interact with other quantities in the same way that real
physical phenomena do:

V = IR
PV = nRT

In other words, arithmetical operations
quantities correctly into new quantities.
useful if the creation, input, and output

should convert the
Also it would be

of those quantities
could be performed using any unit or scaie of measure (length in
METERS or MICRONS or CUBITS). It would be nice, as well, to know
the precision with which a measurement was made, so that it can
be determined if it represents a significant change from the
last measurement. That precision, or measurement error, should
propagate correctly during computation as well.

The objectives which mark progress towards these goals can
be established. The quantities and units should be easy to
define and use. The quantities should convert correctly upon
input in different units. The quantities should convert
correctly upon computation, and if the resultant quantity is of
the incorrect type, an exception should be created, because the
equation is incorrect (or the result type is wrong). Precision
should be computed correctly for the different arithmetic
operations. Finally, if the wrong units are selected for input
or output, an exception should be generated.

The constraints which confine the scope of the effort can
be defined. It is important that the support of the
features of the system should not incur excessive system

F.4.4.2

processing or storage size overhead, because too much time and
space costs money (space less than time these days). Tne
resulting packages should not be too complex, relying instead on
algorithms and structures that are just complex enough to create
a useful result. Lastly, the development should be constrained
against passing the point of diminishing returns. If a
feature is difficult to implement and yields little in tangible
results, it should be forgone.

PHYSICAL QUANTITIES

The tracking and converting of types of quantities is
simply and efficiently d o h in computer programs by dimensional
analysis. [2] This involves some fairly simple physics, f o r
example, the average acceleration of a body can be computed by
the equation:

Average Acceleration (m/s2) = Change
Time of Change (s)

which uses the units m = meters and s = seconds. The average
force applied to the same body can be computed by:

Average Force (N) = Mass of Body (Kg)
* Average Acceleration (m/s2)

which uses the units N = newtons and Kg = kilograms as well as
meters and seconds. What can be seen from combining the units of
these equations is the following units equivalency:

newtons (N) kilograms (Kg) * meters (m)
seconds squared (s2)

The units like kilograms, meters and seconds are called base
units, and the units like newtons are called derived units.
These are all SI units, standardized by the IS0 Resolution RlOOO
in 1969, and documented in the Le Systeme Internationale
de'Unites (BIPM), but conversions exist for all other forms of

c units as well. If a matrix of derived units versus their base
units is made, the dimensionality of derived units in their base
units can be shown (Table F.4.4-1). The newtons unit shows a one
in the kilograms column, a one in the meters column and a -2 in
the seconds column, because seconds squared is reciprocal.

This dimensional analysis can be done for most units in any
of the systems (English, CGS, etc.). Some units, however, are
truly dimensionless. An example is the decibel and the Richter
scale units, which are logarithms of ratios of units which
cancel out. Some units just do not fit into dimensional
analysis. AC circuit impedance equations do not cancel nicely,
for instance, and AC units would probably have to be defined as
dimensionless for those equations to correctly cancel. This
simple dimensional analysis, as a whole, probably deals badly
with sinusoidal phenomena.

F.4.4.3

TABLE F.4.4-1: PARTIAL TABLE OF UNIT DIMENSIONALITY

For each unit, the dimensionality is given versus each base
unit from which it is derived (meter, kilogram, second,
ampere, kelvin, candela & mol), along with the scale and
offset required (1.0, 0.0 for SI derived units).

Base Units SI Conversion

b Derived Units A a K cd mol

-1

-2
1

1

newton : N
hertz : Hz
jou1e:J
watt: W
volt : v
lumen: lm
henry:H
mo1arity:M
astron. unit:AU
footpound:ft-lb
knot: kt

fahrenheit:OF
slug

Scale, Offset

1.0, 0.0
1.0, 0.0
1.0, 0.0
1.0, 0.0
1.0, 0.0
1.0, 0.0
1.0, 0.0
1000.0, 0.0
1.4963+11, 0.0
1.356, 0.0
0.5144, 0.0
14.5939, 0.0

1

2
2
2

2
-3
1
2
1

I

1

1
1
1

1

1

1

-

S

-
-2
-1
-2
-3
-3

-2

-2
-1

7

I 1 I I I 0.5556, 255.37
The advantages of this method of tracking dimensions are

mostly in verification of physical equations used in I C T
applications. Even very complex equations involving many factors
can be analyzed. During addition and subtraction operations, the
two input quantities and one output quantity must be identical
dimensionally. During multiplication the dimensions are added,
and in division they are subtracted. If the result type doesn't
match the computed dimensionality, it is an error. Dimensions
can be stored as integers of range -20..20, and the overhead
involved in integer arithmetic and compares is probably little.

The disadvantages are that it doesn't deal well with AC
quantities and the like, which would require a complicated and
unwieldy solution, yielding few tangible returns. Also, there
are several correct dimensional solutions, any of which can be
misapplied to a problem, with no detectable dimensional error
(series/ parallel DC circuit equations).

MEASURED PHYSICAL QUANTITIES

The measurement of physical quantities always incurs a
measurement error which can be assigned to the measured quantity
at it's source, as it enters the system. This precision is key
to any analysis of the significance of the measured quantity. If
two sequential measurements of the same phenomena are obtained,

F.4.4.4

and their difference is less than the precision by which they
are measured, then there is no significant difference, and the
measurement is considered the same, experimentally. The scope of
use for measurement precision would then be anywhere, in the
system, after the conversion from raw data (counts) into
engineering units. It should be noted here, that the measurement
precision analysis discussed is different from the significant
change analysis used in the front end processing of raw Counts
in the Launch Processing System (LPS), which is a digital
process for raw data concentration to remove line jitter.

Error propagates (increases) as measurement values are
combined by physical equations to yield resultant quantities. If
the precision is an available attribute of the measured
quantity, then the precision of all computed quantities can
likewise be computed and carried along with the measurement. The
computation of propagated error from the mathematical operations
applied to quantities is shown in Table F.4.4-2. The relative-
type error, on the right, looks like it will produce many
occasions of division by zero, and is therefore not useful. The
absolute-type of error, in the center, looks to produce a divide
by zero only when the operation is a divide by zero (in error),
and seems optimal.

For quantities introduced into the system without a
measurement, such as constants, the precision input would be
derived from the number of significant digits (+/- one half of
the last digit).

TABLE F.4.4-2: FORMULAE FOR LIMITING ERROR

For the following mathematical functions: f(x, y) : given
that x and y are the exact values, a and b are
measured approximations, and the deltas for a and
their limiting errors.

their
b are

Type Of Bounds For The
Function Absolute Error

Bounds For The
Relative Error

X + Y

X-Y

X * Y

X/Y

X”

DERIVED TYPES SOLUTION

The simple object-oriented approach to measured quantities
would be to consider units to be classes of measurements, and to
make them derived types of a bask record type which would have

F.4.4.5

the components mentioned: measured value and precision, and
dimensional values. Then the combinations of these types would
be performed by defining, for example, a multiply function that
takes inputs of AMPS and OHMS and makes VOLTS. To define the
legal combinations for just a few types would be laborious,
there are just too many relationships. The simple approach is
too complex.

DISCRIMINANT TYPE SOLUTION

A solution for the representation of physical quantities
using discriminant records is pointed to in Hilfinger [3] . It is
not written exactly in Ada, though, for he presents a case for
possible changes in the language. The record discriminants are
the dimension values and the units scale factor, which would
then prevent assignment of dissimilar units of the same
dimensionality. For example, quantities in meters could not be
assigned to quantities in feet, although the dimensionality is
the same. Assignment of dissimilar constrained records is then
accomplished by the overloading of the assignment operator ":=" I

with a function that re-scales the internal value to the new
scale factor, and creates the correct and matching constraint
values.

In current Ada, however, only discrete discriminants are
legal, which disallows units scale factor as a discriminant
(because it is a real type), and the ":=" operator cannot under
any circumstances be overloaded. So it doesn't work in standard
Ada.

An attempt can be made to standardize that approach, but
there are some problems without the fixes to Ada. If the scale
value were kept as a record component, instead of a
discriminant, it will be modified upon assignment (not a
constraint anymore). This negates the ability to keep scale in
the quantity, and the quantity scaled as feet, instead of
meters .

If the scale for an engineering unit alone is kept, then
offset units, such as degrees fahrenheit (not aligned with
absolute 0 OK) cannot be used.

There is also unnecessary run-time overhead to re-scaling
every time a computation is made, and possible rounding error in
the scale, which may drift. The rounding error in the scale is
probably the reason why Ada doesn't allow it or any other real
type to be used as a record discriminant.

CLOSELY-COUPLED DISCRIMINANT TYPES SOLUTION

A further redefinition of an object can be accomplished
with differentiation [l] , when the object definition has become
too amorphous to simulate the target phenomena. Differentiation
could be considered a fine structure definition technique for
systems, whereas Object-Oriented Design or Functional
Decomposition are gross structure definition techniques.

A separation of the object definition for physical
quantities is made, into two closely-coupled objects, QUANT and

F . 4 . 4 . 6

UNIT. QUANT is the measured quantity, and UNIT is one possible
engineering unit for a quantity. They have attributes in common,
the dimensional values. They also have unshared attributes.

UNIT is a private dimensionally-constrained discriminant
record which contains the scale and offset for the engineering
unit it represents, and can have for components other
engineering unit attributes, such as the text label for output
functions, or an input prompt text.

QUANT is a private dimensionally-constrained discriminant
record which contains the measured value stored in SI units (no
re-scaling), and can have for components other measurement
attributes, such as measurement precision or identification of
source device or process.

Arithmetic interactions of real types with type QUANT
should be similar to those between scalars and vectors, only
multiplication and division being allowed for scaling the QUANT
values. Arithmetic interactions of real types with type UNIT
should be similar to those between scalars and unit vectors, and
therefore a QUANT is the outcome. Any arithmetic interaction cf
a UNIT with a UNIT or a QUANT should produce a QUANT, converting
the pure to the impure, so to speak. QUANT objects should
arithmetically combine to produce QUANT objects, of course.

With these definitions for the private types and arithmetic
functions, it is simple to define several QUANT subtypes for the
physical quantities (LENGTH, MASS, VELOCITY, POTENTIAL, WORK,
INDUCTANCE, etc.) and to define several UNIT constants (deferred
constants in the package) for the engineering units (FT, KG,
KPH, VOLTS, FT-LB, HENRYS, etc.). It should be simple to create
values for QUANT on the fly:

PIPE-LENGTH : LENGTH := 5 * FT;
GAS-CONSTANT : CONSTANT QUANT :=

8.31434 * JOULES / (DEG-K * MOLS) ;

Functions for creating new UNIT constants on the fly will
be necessary, since they cannot be produced arithmetically or
defined externally to the package. 1/0 functions for QUANT
Values will also require a UNIT constant as a parameter, for
scaling to/from SI units. A function for extracting the value of
a QUANT object as a real variable, will also require a UNIT
parameter and a conversion.

It would be possible, with a private dimensionally-
constrained discriminant record variant, to create one type by
lumping both QUANT and UNIT attributes together (one
discriminant chooses which). This, however, is an
unsatisfactory technique. With variant objects, the programmer
always has to check what he has, before he can use it. The
overhead of such checking is little, but the complication is now
pushed into the application, instead of being in the package.
This would seem to be a reversal of the purpose of abstraction.

Measurement precision could be included as a component in
the QUANT definition by the use of the absolute precision
computations listed in Table F.4.4-2. The absolute quantity

F.4.4.7

precision would then be computed into any result, like the
dimensionality and the measured value itself.

The offset component of the UNIT type, could be used for
more than just offset temperature scales (Celsius, fahrenheit) .
Any differential scale could be represented by an engineering
unit. In an example, cargo positional coordinates could be
internally held in a centralized coordinate scheme. Differential
voltages or pressure readings from sensors could also be related
to some reference point.

If the pre-defined UNIT constants were ordered into a
table, the 1/0 functions could, given a quantity of unknown
type, select an output label and scaling, or an input prompt.
This might be particularly useful in the generation of reports
or ad hoc queries, which would use computation involving
quantities and creating new quantities on the fly.

USE OF DISCRIMINANT TYPES IN GENERICS

Along with the useful constraining features of discriminant
records, comes the difficulty of matching them with generic
formal parameters. To instantiate a generic software component
with a formal parameter matching a discriminant private type,
the type must be constrained (no unconstrained types in
generics), and the type of constraint passed as a generic formal
parameter first. Then the discriminant type is passed, as a
discriminant generic formal parameter. It is fairly obvious that
most generic software will be produced, not of this type, but
using the type private, with accompanying functions of that type
(as in the generic sort function in most textbooks).

This problem can be handled, for any unconstrained
discriminant type (QUANT, UNIT) with constrained subtypes
(VOLTAGE, POWER), by declaring a non-discriminant record type
which contains the unconstrained discriminant type. To
instantiate a generic sort function, the enclosing record type
would have to be passed to the generic, for the creation of an
array type (for sorting), and an ordering function gg>88 for the
enclosing type would also have to be defined and passed.

This is somewhat of a kludge, in that the constraints do
not apply within the scope of the generic component.
Simply put, the discriminant types feature of Ada somewhat
precludes the use of generic software in a straightforward
manner

ANALYSIS OF OVERHEAD FOR USAGE OF OBJECT DEFINITION

The storage overhead can be estimated on the assumption of
bytes for dimensional integers and 4-byte floating point
representation for the measurement itself and for it's
precision. This gives a 2X storage increase for carrying the
dimensions and another 1X for the precision, up to 4X for
everything. In communications, with all of the rest of the
overhead involved in sending a measurement in a packet, this
probably is not significant (other measurement information,

F.4.4.8

status, device status, send/receive addresses, transaction ID,
packet ID, etc.) .

The computational overhead for the dimensional analysis
feature, which uses integers, is thought to be small compared to
the floating point math involved in each multiply and divide
for the measurement itself. This is thought even though there
are seven dimensional integers being added for every measurement
being multiplied (inversely for divides). Measurement adds and
subtracts simply involve comparing for the dimensions (can't add
VOLTS to WATTS).

The computational overhead for the precision feature, if
absolute error is propagated by a floating point representation,
is about 1X for adds, subtracts and the power function, 2X for
multiplies, and 4X for divides. This can be seen in the central
column of Table F.4.4-2.

ADVANTAGES OF DIMENSIONAL ANALYSIS FEATURE

The low computational overhead incurred by this feature is
more than compensated by the advantages it carries. These are in
the area of verification, validation, and run-time
interpretation support.

During the development of I & T software, the use of
constrained types to represent quantities should make possible
the verification by dynamic analysis of that software. Even the
most complex equations using dimensional variables, can be
checked for the correct and allowable combination of subtypes,
and for the return of the correct types of physical quantities.
However, this will not catch those mistaken computations which
return the correct quantity type, incorrectly computed.

The dimensional analysis method, since it is a dynamic
feature of programs using it, and not a static feature, will
lend itself well to validation of programs as well. In large I t
T applications (for example LPS), the binding of logical
measurement designation to physical device parameters is delayed
for as long as it is possible. This allows the modification
of hardware parameters with the minimum impact on the software
system. The optimum circumstance would involve run-time binding

configuration could be changed at test-time without having to
patch the system, as is done now.

In that desired situation, there will be a large separation
between the analysis of the logical nature of a program
(equations) , which would occur during development and
verification, and the physical validation of the program against
the model, or components of the Test System. As the distance
between the verification of the logical and the validation of
the logical-to-physical widens, the potential for dynamic
problems to escape unnoticed should increase. If methods for
logical verification of programs at run-time are used, such as
dimensional analysis of equations by the method proposed, the
possibility of catching these dynamic problems increases.

This problem of run-time dynamic analysis is exacerbated in
the use of I & T command languages such as the User Interface

- I of the logical level to the physical, so that the hardware

F.4.4.9

Language (UIL) and it's subset, the Space Station Operations
Language (SSOL). The commands in these languages are interpreted
at run-time, and are formulated by the user at the terminal, on-
orbit. The use of complex equations in these languages to
perform control functions is proposed. Syntax checking can be
performed easily by the User Interface, but checks for
correctness of the physical equations used will require some
facility, such as dimensional analysis. If dimensional
analysis were used, the internal checks in the interpreter
program would be automatic against every statement using
physical quantities, and exceptions would be generated on a
statement by statement basis.

ADVANTAGES OF COMPUTATION OF PRECISION FEATURE

As the complexity of systems increases, leading up to the
Space Station era, so does the number of levels of integration
to be passed through by components before their operational use.
In some shuttle payloads from ESA, there are already 7 levels of
integration. If Ada is to become widespread in it's use as the I
& T language supporting these levels of integration, then the
Ada software products must be promotable between levels of
integration. This does not imply a need to run the same
procedure at a higher level, although that may be a requirement.
What it does require is that lower level software components be
incorporated by some method of abstraction into higher level
components, up through launch operations and on-orbit
operations.

At each level of abstraction, component level state,
control and measurement variables are presented as parameters to
higher-level integration software, simplifying interfaces at the
subsystem, and then the system level. This continues until at
the on-orbit user interface level, simple designators for
systems are connected to a large tree of state, control and
measurement variables extending all the way back down the
integration chain.

In systems using abstracted measurement variables, knowing
the significance of measurements at all levels is an important
issue. Control logic algorithms which attempt to establish set
points to an insignificant range are erroneous. Commands which
effect an insignificant change in an effector are meaningless,
and consume system resources in their performance. Measurements
which involve insignificant changes in levels should not be
communicated.

communication overhead becomes more of an issue, as we
progress from tightly-coupled shared-memory systems (like LPS),
to loosely-coupled distributed systems (like GDMS prototypes).
Distributed systems have failure modes related to communication
loading (traffic jams), which can be abated somewhat by data
concentration.

concentration of data at the very lowest level of
measurement has, and will probably continue to be performed on
the raw data by bit-oriented algorithms. After the basic
measurements have been converted to ei'gineering units, however,

F. 4.4.10

there are data concentration possibilities, based on
significance and propagated significance, that affect
communications, and the stimulus and response of the system.

GENERAL ADVANTAGES OF DATA ABSTRACTION APPLY

The systems supporting the future I t T applications
described in the last section, will be highly distributed. They
will contain components from several levels of integration and
will also need to be programmed at the highest level possible.
The programs which drive the higher-level system functioning
should not be bogged down with detailed data analysis.
Facilities supporting the propagation of information concerning
the validity of measurements and the validity of algorithms
concerning those measurements should be basic to the system.
Complex programs integrating the functioning of a distributed I
t T system will be inherently more maintainable and reusable if
kept at highest possible level of data, system and resource
abstraction. Greater readability and verifiability of software
components, and greater reliability and ease of validation of
the system code is then possible. Finally, the design and
development of the user interface level applications becomes
easier, the higher the level of abstraction that is achieved for
the system components and measurements.

ACKNOWLEDGEMENT

I gratefully acknowledge the support given by the Kennedy
Space Center/ Engineering Development/ Systems Integration
Branch in supplying the computer facilities for the feasibility
studies that provided the basis of this work. I also thank my
wife, Bronwen Chandler, for her support.

REFERENCES

1. Johnson, C., 1986. "Some Design Constraints Required for
the Assembly of Software Components: The Incorporation of
Atomic Abstract Types into Generically Structured Abstract
Typesv1, Proceedings of the First International Conference
On Ada* Programming Language Applications For The NASA
Space Station.

2. Karr, M., and Loveman, D. B. 111. May 1978. "Incorporation
of Units Into Programming Languages", Communications of the
ACM, Vol. 21, No. 5.

3. Hilfinger, P. N. 1983. Abstraction Mechanisms and Language
Design. Cambridge, Massachusetts: The MIT Press.

F.4.4.11

